publications

2024

  1. nofreelunch.jpeg
    The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
    Micah Goldblum ,  Marc Finzi ,  Keefer Rowan ,  and  Andrew Gordon Wilson
    International Conference on Machine Learning (ICML), 2024
  2. binoculars.png
    Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
    Abhimanyu Hans ,  Avi Schwarzschild ,  Valeriia Cherepanova ,  Hamid Kazemi ,  Aniruddha Saha ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    International Conference on Machine Learning (ICML), 2024
  3. llmbound.png
    Non-Vacuous Generalization Bounds for Large Language Models
    Sanae Lotfi ,  Marc Finzi ,  Yilun Kuang ,  Tim GJ Rudner ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    International Conference on Machine Learning (ICML), 2024
  4. llmcalibration.png
    Large Language Models Must Be Taught to Know What They Don’t Know
    Sanyam Kapoor ,  Nate Gruver ,  Manley Roberts ,  Katherine Collins ,  Arka Pal ,  Umang Bhatt ,  Adrian Weller ,  Samuel Dooley ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2024
  5. tunetables.png
    TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks
    Benjamin Feuer ,  Robin Tibor Schirrmeister ,  Valeriia Cherepanova ,  Chinmay Hegde ,  Frank Hutter ,  Micah Goldblum ,  Niv Cohen ,  and  Colin White
    Advances in Neural Information Processing Systems (NeurIPS), 2024
  6. unlocking.png
    Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
    Sanae Lotfi ,  Yilun Kuang ,  Brandon Amos ,  Micah Goldblum ,  Marc Finzi ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2024
  7. einsum.png
    Searching for Efficient Linear Layers over a Continuous Space of Structured Matrices
    Andres Potapczynski ,  Shikai Qiu ,  Marc Anton Finzi ,  Christopher Ferri ,  Zixi Chen ,  Micah Goldblum ,  Bayan C Bruss ,  Christopher De Sa ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2024
  8. computebetterspent.jpg
    Compute Better Spent: Replacing Dense Layers with Structured Matrices
    Shikai Qiu ,  Andres Potapczynski ,  Marc Anton Finzi ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    International Conference on Machine Learning (ICML), 2024
  9. measuringstyle.png
    Measuring Style Similarity in Diffusion Models
    Gowthami Somepalli ,  Anubhav Gupta ,  Kamal Gupta ,  Shramay Palta ,  Micah Goldblum ,  Jonas Geiping ,  Abhinav Shrivastava ,  and  Tom Goldstein
    European Conference on Computer Vision (ECCV), 2024
  10. watermark.jpeg
    On the Reliability of Watermarks for Large Language Models
    John Kirchenbauer ,  Jonas Geiping ,  Yuxin Wen ,  Manli Shu ,  Khalid Saifullah ,  Kezhi Kong ,  Kasun Fernando ,  Aniruddha Saha ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2024
  11. neftune.png
    NEFTune: Noisy Embeddings Improve Instruction Finetuning
    Neel Jain ,  Ping-yeh Chiang ,  Yuxin Wen ,  John Kirchenbauer ,  Hong-Min Chu ,  Gowthami Somepalli ,  Brian Bartoldson ,  Bhavya Kailkhura ,  Avi Schwarzschild ,  Aniruddha Saha ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2024
  12. guidance.png
    Universal guidance for diffusion models
    Arpit Bansal ,  Hong-Min Chu ,  Avi Schwarzschild ,  Soumyadip Sengupta ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2024

2023

  1. backbone.jpeg
    Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
    Micah Goldblum ,  Hossein Souri ,  Renkun Ni ,  Manli Shu ,  Viraj Uday Prabhu ,  Gowthami Somepalli ,  Prithvijit Chattopadhyay ,  Adrien Bardes ,  Mark Ibrahim ,  Judy Hoffman ,  Rama Chellappa ,  Andrew Gordon Wilson ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  2. fairfacerec.jpeg
    Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
    Samuel Dooley ,  Rhea Sukthanker ,  John P Dickerson ,  Colin White ,  Frank Hutter ,  and  Micah Goldblum
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  3. lasso.jpeg
    A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning
    Valeriia Cherepanova ,  Gowthami Somepalli ,  Jonas Geiping ,  C. Bayan Bruss ,  Andrew Gordon Wilson ,  Tom Goldstein ,  and  Micah Goldblum
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  4. imbalance.png
    Simplifying Neural Network Training Under Class Imbalance
    Ravid Shwartz-Ziv ,  Micah Goldblum ,  Yucen Lily Li ,  C. Bayan Bruss ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  5. colddiffusion.png
    Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
    Arpit Bansal ,  Eitan Borgnia ,  Hong-Min Chu ,  Jie S Li ,  Hamid Kazemi ,  Furong Huang ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  6. mitigatecopying.jpg
    Why Diffusion Models Memorize and How to Mitigate Copying
    Gowthami Somepalli ,  Vasu Singla ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  7. hardprompts.png
    Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
    Yuxin Wen ,  Neel Jain ,  John Kirchenbauer ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  8. tree.jpeg
    When Do Neural Nets Outperform Boosted Trees on Tabular Data?
    Duncan McElfresh ,  Sujay Khandagale ,  Jonathan Valverde ,  Ganesh Ramakrishnan ,  Micah Goldblum ,  Colin White ,  and  others
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  9. unlearnable.png
    What Can We Learn from Unlearnable Datasets
    Pedro Sandoval-Segura ,  Vasu Singla ,  Jonas Geiping ,  Micah Goldblum ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  10. tabular.png
    Transfer Learning with Deep Tabular Models
    Roman Levin ,  Valeriia Cherepanova ,  Avi Schwarzschild ,  Arpit Bansal ,  Bayan Bruss ,  Tom Goldstein ,  Andrew Gordon Wilson ,  and  Micah Goldblum
    International Conference on Learning Representations (ICLR), 2023
  11. target.jpeg
    Gradient-Based Optimization Is Not Necessary for Generalization in Neural Networks
    Ping-yeh Chiang ,  Renkun Ni ,  David Yu Miller ,  Arpit Bansal ,  Jonas Geiping ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2023
  12. decision_boundaries.png
    Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
    Yuancheng Xu ,  Yanchao Sun ,  Micah Goldblum ,  Tom Goldstein ,  and  Furong Huang
    International Conference on Learning Representations (ICLR), 2023
  13. canary.png
    Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries
    Yuxin Wen ,  Arpit Bansal ,  Hamid Kazemi ,  Eitan Borgnia ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2023
  14. lie.png
    The Lie Derivative for Measuring Learned Equivariance
    Nate Gruver ,  Marc Anton Finzi ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    International Conference on Learning Representations (ICLR), 2023
  15. panning.png
    Panning for Gold in Federated Learning: Targeted Text Extraction under Arbitrarily Large-Scale Aggregation
    Hong-Min Chu ,  Jonas Geiping ,  Liam H Fowl ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2023
  16. augmentation.png
    How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
    Jonas Geiping ,  Micah Goldblum ,  Gowthami Somepalli ,  Ravid Shwartz-Ziv ,  Tom Goldstein ,  and  Andrew Gordon Wilson
    International Conference on Learning Representations (ICLR), 2023
  17. decepticons.png
    Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models
    Liam H Fowl ,  Jonas Geiping ,  Steven Reich ,  Yuxin Wen ,  Wojciech Czaja ,  Goldblum. Micah ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2023
  18. wave.jpeg
    Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models
    Gowthami Somepalli ,  Vasu Singla ,  Micah Goldblum ,  Jonas Geiping ,  and  Tom Goldstein
    Computer Vision and Pattern Recognition Conference (CVPR), 2023
  19. cookbook.jpg
    A cookbook of self-supervised learning
    Randall Balestriero ,  Mark Ibrahim ,  Vlad Sobal ,  Ari Morcos ,  Shashank Shekhar ,  Tom Goldstein ,  Florian Bordes ,  Adrien Bardes ,  Gregoire Mialon ,  Yuandong Tian ,  Avi Schwarzschild ,  Andrew Wilson ,  Jonas Geiping ,  Quentin Garrido ,  Pierre Fernandez ,  Amir Bar ,  Hamed Pirsiavash ,  Yann LeCun ,  and  Micah Goldblum
    Preprint, 2023

2022

  1. marginal.png
    Bayesian Model Selection, the Marginal Likelihood, and Generalization
    Sanae Lotfi ,  Pavel Izmailov ,  Gregory Benton ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    International Conference on Machine Learning (ICML) Outstanding Paper Award, 2022
  2. backdoor.jpeg
    Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
    Micah Goldblum ,  Dimitris Tsipras ,  Chulin Xie ,  Xinyun Chen ,  Avi Schwarzschild ,  Dawn Song ,  Aleksander Madry ,  Bo Li ,  and  Tom Goldstein
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
  3. recurrence.png
    The Uncanny Similarity of Recurrence and Depth
    Avi Schwarzschild ,  Arjun Gupta ,  Amin Ghiasi ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2022
  4. metacontrastive.png
    The Close Relationship Between Contrastive Learning and Meta-Learning
    Renkun Ni ,  Manli Shu ,  Hossein Souri ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2022
  5. stochastic.png
    Stochastic Training is Not Necessary for Generalization
    Jonas Geiping ,  Micah Goldblum ,  Phil Pope ,  Michael Moeller ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2022
  6. robber.png
    Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
    Liam Fowl ,  Jonas Geiping ,  Wojciech Czaja ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2022
  7. fishing.png
    Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
    Yuxin Wen ,  Jonas Geiping ,  Liam Fowl ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Machine Learning (ICML), 2022
  8. plugininversion.png
    Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations
    Amin Ghiasi ,  Hamid Kazemi ,  Steven Reich ,  Chen Zhu ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Machine Learning (ICML), 2022
  9. boundaries.png
    Can You Learn the Same Model Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Perspective
    Gowthami Somepalli ,  Liam Fowl ,  Arpit Bansal ,  Ping Ye-Chiang ,  Yehuda Dar ,  Richard Baraniuk ,  Micah Goldblum ,  and  Tom Goldstein
    Conference on Computer Vision and Pattern Recognition (CVPR), 2022
  10. autoregressive_50.png
    Autoregressive Perturbations for Data Poisoning
    Pedro Sandoval-Segura ,  Vasu Singla ,  Jonas Geiping ,  Micah Goldblum ,  Tom Goldstein ,  and  David W Jacobs
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  11. pretrain_30.png
    Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
    Ravid Shwartz-Ziv ,  Micah Goldblum ,  Hossein Souri ,  Sanyam Kapoor ,  Chen Zhu ,  Yann LeCun ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  12. maze.png
    End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking
    Arpit Bansal ,  Avi Schwarzschild ,  Eitan Borgnia ,  Zeyad Emam ,  Furong Huang ,  Micah Goldblum ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  13. sleeper.png
    Sleeper agent: Scalable hidden trigger backdoors for neural networks trained from scratch
    Hossein Souri ,  Micah Goldblum ,  Liam Fowl ,  Rama Chellappa ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  14. explainable_50.png
    Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability
    Roman Levin ,  Manli Shu ,  Eitan Borgnia ,  Furong Huang ,  Micah Goldblum ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  15. shortcut.png
    Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers
    Wanqian Yang ,  Polina Kirichenko ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  16. compression_50.jpg
    PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
    Sanae Lotfi ,  Marc Anton Finzi ,  Sanyam Kapoor ,  Andres Potapczynski ,  Micah Goldblum ,  and  Andrew Gordon Wilson
    Advances in Neural Information Processing Systems (NeurIPS), 2022

2021

  1. deepthink1.png
    Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks
    Avi Schwarzschild ,  Eitan Borgnia ,  Arjun Gupta ,  Furong Huang ,  Uzi Vishkin ,  Micah Goldblum ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  2. advbn.png
    Prepare for the Worst: Generalizing across Domain Shifts with Adversarial Batch Normalization
    Manli Shu ,  Zuxuan Wu ,  Micah Goldblum ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  3. adversarial_poisoning.jpg
    Adversarial Examples Make Strong Poisons
    Liam Fowl ,  Micah Goldblum ,  Ping-yeh Chiang ,  Jonas Geiping ,  Wojtek Czaja ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  4. cutmix.jpeg
    Data Augmentation for Meta-Learning
    Renkun Ni ,  Micah Goldblum ,  Amr Sharaf ,  Kezhi Kong ,  and  Tom Goldstein
    International Conference on Machine Learning (ICML), 2021
  5. data-poisoning.jpeg
    Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks
    Avi Schwarzschild ,  Micah Goldblum ,  Arjun Gupta ,  John P Dickerson ,  and  Tom Goldstein
    International Conference on Machine Learning (ICML), 2021
  6. lowkey.png
    LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition
    Valeriia Cherepanova ,  Micah Goldblum ,  Harrison Foley ,  Shiyuan Duan ,  John P Dickerson ,  Gavin Taylor ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2021
  7. manifold.png
    The Intrinsic Dimension of Images and Its Impact on Learning
    Phillip Pope ,  Chen Zhu ,  Ahmed Abdelkader ,  Micah Goldblum ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2021
  8. instahide.png
    Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff
    Eitan Borgnia ,  Valeriia Cherepanova ,  Liam Fowl ,  Amin Ghiasi ,  Jonas Geiping ,  Micah Goldblum ,  Tom Goldstein ,  and  Arjun Gupta
    In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) , 2021
  9. hft.jpg
    Adversarial Attacks on Machine Learning Systems for High-Frequency Trading
    Micah Goldblum ,  Avi Schwarzschild ,  Ankit B Patel ,  and  Tom Goldstein
    ACM International Conference on AI in Finance (ICAIF), 2021

2020

  1. meta.png
    Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
    Micah Goldblum ,  Liam Fowl ,  and  Tom Goldstein
    Advances in Neural Information Processing Systems (NeurIPS), 2020
  2. variance_2.png
    Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks
    Micah Goldblum ,  Steven Reich ,  Liam Fowl ,  Renkun Ni ,  Valeriia Cherepanova ,  and  Tom Goldstein
    International Conference on Machine Learning (ICML), 2020
  3. propaganda.png
    Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory
    Micah Goldblum ,  Jonas Geiping ,  Avi Schwarzschild ,  Michael Moeller ,  and  Tom Goldstein
    International Conference on Learning Representations (ICLR), 2020
  4. distilled.png
    Adversarially Robust Distillation
    Micah Goldblum ,  Liam Fowl ,  Soheil Feizi ,  and  Tom Goldstein
    Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2020
  5. witch.png
    Witchcraft: Efficient PGD Attacks with Random Step Size
    Ping-Yeh Chiang ,  Jonas Geiping ,  Micah Goldblum ,  Tom Goldstein ,  Renkun Ni ,  Steven Reich ,  and  Ali Shafahi
    In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) , 2020

2019

  1. shearlet.png
    Sheared Multi-Scale Weight Sharing for Multi-Spectral Superresolution
    Micah Goldblum ,  Liam Fowl ,  and  Wojciech Czaja
    In Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV , 2019